Angiotensin II relaxes microvessels via the AT(2) receptor and Ca(2+)-activated K(+) (BK(Ca)) channels.

نویسندگان

  • C Dimitropoulou
  • R E White
  • L Fuchs
  • H Zhang
  • J D Catravas
  • G O Carrier
چکیده

Angiotensin II (Ang II) is one of the most potent vasoconstrictor substances, yet paradoxically, Ang II may dilate certain vascular beds via an undefined mechanism. Ang II-induced vasoconstriction is mediated by the AT(1) receptor, whereas the relative expression and functional importance of the AT(2) receptor in regulating vascular resistance and blood pressure are unknown. We now report that Ang II induces relaxation of mesenteric microvessels and that this vasodilatory response was unaffected by losartan, an AT(1) receptor antagonist, but was inhibited by PD123,319, a selective antagonist of AT(2) receptors. In addition, reverse transcriptase-polymerase chain reaction studies revealed high amounts of AT(2) receptor mRNA in smooth muscle from these same microvessels. Ang II-induced relaxation was inhibited by either tetraethylammonium or iberiotoxin, suggesting involvement of the large-conductance, calcium- and voltage-activated potassium (BK(Ca)) channel. Subsequent whole-cell and single-channel patch-clamp studies on single myocytes demonstrated that Ang II increases the activity of BK(Ca) channels. As in our tissue studies, the effect of Ang II on BK(Ca) channels was inhibited by PD123,319, but not by losartan. In light of these consistent findings from tissue physiology, molecular studies, and cellular/molecular physiology, we conclude that Ang II relaxes microvessels via stimulation of the AT(2) receptor with subsequent opening of BK(Ca) channels, leading to membrane repolarization and vasodilation. These findings provide evidence for a novel endothelium-independent vasodilatory effect of Ang II.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angiotensin II Relaxes Microvessels Via the AT2 Receptor and Ca-Activated K (BKCa) Channels

Angiotensin II (Ang II) is one of the most potent vasoconstrictor substances, yet paradoxically, Ang II may dilate certain vascular beds via an undefined mechanism. Ang II–induced vasoconstriction is mediated by the AT1 receptor, whereas the relative expression and functional importance of the AT2 receptor in regulating vascular resistance and blood pressure are unknown. We now report that Ang ...

متن کامل

Losartan normalizes endothelium-derived hyperpolarizing factor-mediated relaxation by activating Ca2+-activated K+ channels in mesenteric artery from type 2 diabetic GK rat.

Ca(2+)-activated K(+) (K(Ca)) channels are important for endothelium-derived hyperpolarizing factor (EDHF) signaling. Since treatment with angiotensin II receptor blockers (ARBs) improves vasculopathies in type 2 diabetic patients, we asked whether the EDHF-type relaxation and its associated K(Ca) channels [small (SK(Ca))-, intermediate (IK(Ca))-, and large (BK(Ca))-conductance channels] are ab...

متن کامل

H(2)O(2) opens BK(Ca) channels via the PLA(2)-arachidonic acid signaling cascade in coronary artery smooth muscle.

H(2)O(2) is a reactive oxygen species that contracts or relaxes vascular smooth muscle, but the molecular basis of these effects remains obscure. We previously demonstrated that H(2)O(2) opens the large-conductance, calcium- and voltage-activated (BK(Ca)) potassium channel of coronary myocytes (2) and now report physiological and biochemical evidence that the effect of H(2)O(2) on coronary smoo...

متن کامل

Renovascular BK(Ca) channels are not activated in vivo under resting conditions and during agonist stimulation.

We investigated the role of large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels for the basal renal vascular tone in vivo. Furthermore, the possible buffering by BK(Ca) of the vasoconstriction elicited by angiotensin II (ANG II) or norepinephrine (NE) was investigated. The possible activation of renal vascular BK(Ca) channels by cAMP was investigated by infusing forskolin. Renal blood flo...

متن کامل

The essential role of luminal BK channels in distal colonic K+ secretion.

Distal colonic K(+) excretion is determined by the balance of K(+) absorption and K(+) secretion of the enterocytes. K(+) secretion occurs via active basolateral K(+) uptake mostly via the NKCC1 co-transporter followed by K(+) exit via a luminal K(+) channel. The specific focus here is directed towards the luminal secretory K(+) channel (1). Several recent observations highlight the pivotal rol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Hypertension

دوره 37 2  شماره 

صفحات  -

تاریخ انتشار 2001